MATH 20D Spring 2023 Lecture 7.

Linear Independence

Outline

(1) More on Mixing
(2) 2nd Order Linear Equations

Announcements

- Join the class Zulip via the link available in Canvas

Announcements

- Join the class Zulip via the link available in Canvas
- Midterm 1 is approaching (next Wednesday WLH 2005 during lecture)

Announcements

- Join the class Zulip via the link available in Canvas
- Midterm 1 is approaching (next Wednesday WLH 2005 during lecture)
- Make sure you have a scientific calculator ready for next Wednesday.

Announcements

- Join the class Zulip via the link available in Canvas
- Midterm 1 is approaching (next Wednesday WLH 2005 during lecture)
- Make sure you have a scientific calculator ready for next Wednesday.
- Assessable content:

Announcements

- Join the class Zulip via the link available in Canvas
- Midterm 1 is approaching (next Wednesday WLH 2005 during lecture)
- Make sure you have a scientific calculator ready for next Wednesday.
- Assessable content:
(a) Material from homeworks 1,2 \& 3 (optional questions not included).

Announcements

- Join the class Zulip via the link available in Canvas
- Midterm 1 is approaching (next Wednesday WLH 2005 during lecture)
- Make sure you have a scientific calculator ready for next Wednesday.
- Assessable content:
(a) Material from homeworks $1,2 \& 3$ (optional questions not included).
(b) Examples from lectures $1-9$ (optional slides not included).

Announcements

- Join the class Zulip via the link available in Canvas
- Midterm 1 is approaching (next Wednesday WLH 2005 during lecture)
- Make sure you have a scientific calculator ready for next Wednesday.
- Assessable content:
(a) Material from homeworks $1,2 \& 3$ (optional questions not included).
(b) Examples from lectures $1-9$ (optional slides not included).
(c) Problem types appearing on review sheet (coming soon with solutions).

Announcements

- Join the class Zulip via the link available in Canvas
- Midterm 1 is approaching (next Wednesday WLH 2005 during lecture)
- Make sure you have a scientific calculator ready for next Wednesday.
- Assessable content:
(a) Material from homeworks $1,2 \& 3$ (optional questions not included).
(b) Examples from lectures $1-9$ (optional slides not included).
(c) Problem types appearing on review sheet (coming soon with solutions).
- You will be provided with a a table of standard integrals and trigonometric formulas.

Announcements

- Join the class Zulip via the link available in Canvas
- Midterm 1 is approaching (next Wednesday WLH 2005 during lecture)
- Make sure you have a scientific calculator ready for next Wednesday.
- Assessable content:
(a) Material from homeworks $1,2 \& 3$ (optional questions not included).
(b) Examples from lectures $1-9$ (optional slides not included).
(c) Problem types appearing on review sheet (coming soon with solutions).
- You will be provided with a a table of standard integrals and trigonometric formulas.
- You may bring one double sided sheet of handwritten notes to the exam.

Announcements

- Join the class Zulip via the link available in Canvas
- Midterm 1 is approaching (next Wednesday WLH 2005 during lecture)
- Make sure you have a scientific calculator ready for next Wednesday.
- Assessable content:
(a) Material from homeworks $1,2 \& 3$ (optional questions not included).
(b) Examples from lectures $1-9$ (optional slides not included).
(c) Problem types appearing on review sheet (coming soon with solutions).
- You will be provided with a a table of standard integrals and trigonometric formulas.
- You may bring one double sided sheet of handwritten notes to the exam.
- Warning! Our lecture stream is not coordinated with the other MATH 20D lecture streams. Question types on the C00 MATH 20D Midterm may differ significantly from those asked in other 20D lecture streams.

Contents

(2) 2nd Order Linear Equations

Mixing Problems

Example

- Initially a tank contains 180 litres of solution which is 10% nitric acid
- At time $t=0$ a nitric acid solution begins to flow into the tank at a constant rate of $6 \mathrm{~L} / \mathrm{min}$.
- The solution entering the tank is 20% nitric acid.
- The solution inside the tank is kept well stirred and flows out of the tank at a rate of 6L/min.
(a) Determine the volume of nitric acid in the tank after 10 minutes.

Express your answer to the nearest 0.01L

Mixing Problems

Example

- Initially a tank contains 180 litres of solution which is 10% nitric acid
- At time $t=0$ a nitric acid solution begins to flow into the tank at a constant rate of $6 \mathrm{~L} / \mathrm{min}$.
- The solution entering the tank is 20% nitric acid.
- The solution inside the tank is kept well stirred and flows out of the tank at a rate of $6 \mathrm{~L} / \mathrm{min}$.
(a) Determine the volume of nitric acid in the tank after 10 minutes.

Express your answer to the nearest 0.01L

- After 10 minutes a gushing leak develops and the rate of outflow from the tank increases to 12L/min

Mixing Problems

Example

- Initially a tank contains 180 litres of solution which is 10% nitric acid
- At time $t=0$ a nitric acid solution begins to flow into the tank at a constant rate of $6 \mathrm{~L} / \mathrm{min}$.
- The solution entering the tank is 20% nitric acid.
- The solution inside the tank is kept well stirred and flows out of the tank at a rate of $6 \mathrm{~L} / \mathrm{min}$.
(a) Determine the volume of nitric acid in the tank after 10 minutes.

Express your answer to the nearest 0.01L

- After 10 minutes a gushing leak develops and the rate of outflow from the tank increases to 12L/min
(b) Determine the volume of nitric acid in the tank after 10 minutes after the leak develops. Express your answer to the nearest 0.01 L

Solution I

Part (a)

For $t \leqslant 10$, separation of variables applied to $\frac{d N}{d t}=\frac{d N_{\text {in }}}{d t}-\frac{d N_{\text {out }}}{d t}$ gave

$$
N=36-A e^{-t / 30}
$$

Solution I

Part (a)

For $t \leqslant 10$, separation of variables applied to $\frac{d N}{d t}=\frac{d N_{\text {in }}}{d t}-\frac{d N_{\text {out }}}{d t}$ gave

$$
N=36-A e^{-t / 30} .
$$

Substituting $N(0)=180 \cdot \frac{1}{10}=18$ we find that $A=18$. Hence $N(10)=23.1024$.

Solution I

Part (a)

For $t \leqslant 10$, separation of variables applied to $\frac{d N}{d t}=\frac{d N_{\text {in }}}{d t}-\frac{d N_{\text {out }}}{d t}$ gave

$$
N=36-A e^{-t / 30} .
$$

Substituting $N(0)=180 \cdot \frac{1}{10}=18$ we find that $A=18$. Hence $N(10)=23.1024$.
Part (b)
For $t \geqslant 10$, the volume of nitric acid varies according to

$$
\frac{d N}{d t}+\frac{2 N}{40-t}=1.2
$$

Solution I

Part (a)

For $t \leqslant 10$, separation of variables applied to $\frac{d N}{d t}=\frac{d N_{\text {in }}}{d t}-\frac{d N_{\text {out }}}{d t}$ gave

$$
N=36-A e^{-t / 30}
$$

Substituting $N(0)=180 \cdot \frac{1}{10}=18$ we find that $A=18$. Hence $N(10)=23.1024$.
Part (b)
For $t \geqslant 10$, the volume of nitric acid varies according to

$$
\frac{d N}{d t}+\frac{2 N}{40-t}=1.2
$$

The integrating factor is then given by

$$
\mu(t)=\exp \left(\int \frac{2 d t}{40-t}\right)=
$$

Solution I

Part (a)

For $t \leqslant 10$, separation of variables applied to $\frac{d N}{d t}=\frac{d N_{\text {in }}}{d t}-\frac{d N_{\text {out }}}{d t}$ gave

$$
N=36-A e^{-t / 30}
$$

Substituting $N(0)=180 \cdot \frac{1}{10}=18$ we find that $A=18$. Hence $N(10)=23.1024$.
Part (b)
For $t \geqslant 10$, the volume of nitric acid varies according to

$$
\frac{d N}{d t}+\frac{2 N}{40-t}=1.2
$$

The integrating factor is then given by

$$
\mu(t)=\exp \left(\int \frac{2 d t}{40-t}\right)=\exp (-2 \log |40-t|)=
$$

Solution I

Part (a)

For $t \leqslant 10$, separation of variables applied to $\frac{d N}{d t}=\frac{d N_{\text {in }}}{d t}-\frac{d N_{\text {out }}}{d t}$ gave

$$
N=36-A e^{-t / 30}
$$

Substituting $N(0)=180 \cdot \frac{1}{10}=18$ we find that $A=18$. Hence $N(10)=23.1024$.
Part (b)
For $t \geqslant 10$, the volume of nitric acid varies according to

$$
\frac{d N}{d t}+\frac{2 N}{40-t}=1.2
$$

The integrating factor is then given by

$$
\mu(t)=\exp \left(\int \frac{2 d t}{40-t}\right)=\exp (-2 \log |40-t|)=\exp \left(\log |40-t|^{-2}\right)
$$

Solution I

Part (a)

For $t \leqslant 10$, separation of variables applied to $\frac{d N}{d t}=\frac{d N_{\text {in }}}{d t}-\frac{d N_{\text {out }}}{d t}$ gave

$$
N=36-A e^{-t / 30}
$$

Substituting $N(0)=180 \cdot \frac{1}{10}=18$ we find that $A=18$. Hence $N(10)=23.1024$.
Part (b)
For $t \geqslant 10$, the volume of nitric acid varies according to

$$
\frac{d N}{d t}+\frac{2 N}{40-t}=1.2
$$

The integrating factor is then given by

$$
\mu(t)=\exp \left(\int \frac{2 d t}{40-t}\right)=\exp (-2 \log |40-t|)=\exp \left(\log |40-t|^{-2}\right)
$$

So $\mu(t)=(40-t)^{-2}$ for all $t \leqslant 40$.

Solution I

Part (a)

For $t \leqslant 10$, separation of variables applied to $\frac{d N}{d t}=\frac{d N_{\text {in }}}{d t}-\frac{d N_{\text {out }}}{d t}$ gave

$$
N=36-A e^{-t / 30}
$$

Substituting $N(0)=180 \cdot \frac{1}{10}=18$ we find that $A=18$. Hence $N(10)=23.1024$.
Part (b)
For $t \geqslant 10$, the volume of nitric acid varies according to

$$
\frac{d N}{d t}+\frac{2 N}{40-t}=1.2
$$

The integrating factor is then given by

$$
\mu(t)=\exp \left(\int \frac{2 d t}{40-t}\right)=\exp (-2 \log |40-t|)=\exp \left(\log |40-t|^{-2}\right)
$$

So $\mu(t)=(40-t)^{-2}$ for all $t \leqslant 40$. So $\frac{d}{d t}\left((40-t)^{-2} N\right)=1.2 \cdot(40-t)^{-2}$.

Solution II

Part (b)

For $t \geqslant 10$, the volume of nitric acid varies according to

$$
\frac{d N}{d t}+\frac{2 N}{40-t}=1.2
$$

The integrating factor is then given by

$$
\mu(t)=(40-t)^{-2}
$$

Solution II

Part (b)

For $t \geqslant 10$, the volume of nitric acid varies according to

$$
\frac{d N}{d t}+\frac{2 N}{40-t}=1.2
$$

The integrating factor is then given by

$$
\mu(t)=(40-t)^{-2}
$$

Part (b) (continued)
So $\frac{d}{d t}\left((40-t)^{-2} N\right)=1.2 \cdot(40-t)^{-2}$ and

$$
(40-t)^{-2} N
$$

Solution II

Part (b)

For $t \geqslant 10$, the volume of nitric acid varies according to

$$
\frac{d N}{d t}+\frac{2 N}{40-t}=1.2
$$

The integrating factor is then given by

$$
\mu(t)=(40-t)^{-2}
$$

Part (b) (continued)
So $\frac{d}{d t}\left((40-t)^{-2} N\right)=1.2 \cdot(40-t)^{-2}$ and

$$
(40-t)^{-2} N=1.2 \cdot \int(40-t)^{-2} d t
$$

Solution II

Part (b)

For $t \geqslant 10$, the volume of nitric acid varies according to

$$
\frac{d N}{d t}+\frac{2 N}{40-t}=1.2
$$

The integrating factor is then given by

$$
\mu(t)=(40-t)^{-2}
$$

Part (b) (continued)
So $\frac{d}{d t}\left((40-t)^{-2} N\right)=1.2 \cdot(40-t)^{-2}$ and

$$
(40-t)^{-2} N=1.2 \cdot \int(40-t)^{-2} d t=1.2 \cdot(40-t)^{-1}+C
$$

Solution II

Part (b)

For $t \geqslant 10$, the volume of nitric acid varies according to

$$
\frac{d N}{d t}+\frac{2 N}{40-t}=1.2
$$

The integrating factor is then given by

$$
\mu(t)=(40-t)^{-2}
$$

Part (b) (continued)
So $\frac{d}{d t}\left((40-t)^{-2} N\right)=1.2 \cdot(40-t)^{-2}$ and

$$
(40-t)^{-2} N=1.2 \cdot \int(40-t)^{-2} d t=1.2 \cdot(40-t)^{-1}+C
$$

So

$$
N(t)=1.2 \cdot(40-t)+C(40-t)^{2} .
$$

Solution II

Part (b)

For $t \geqslant 10$, the volume of nitric acid varies according to

$$
\frac{d N}{d t}+\frac{2 N}{40-t}=1.2
$$

The integrating factor is then given by

$$
\mu(t)=(40-t)^{-2}
$$

Part (b) (continued)
So $\frac{d}{d t}\left((40-t)^{-2} N\right)=1.2 \cdot(40-t)^{-2}$ and

$$
(40-t)^{-2} N=1.2 \cdot \int(40-t)^{-2} d t=1.2 \cdot(40-t)^{-1}+C
$$

So

$$
N(t)=1.2 \cdot(40-t)+C(40-t)^{2} .
$$

The initial condition $N(10)=23.1024$ gives $C=-0.0143$.

Solution II

Part (b)

For $t \geqslant 10$, the volume of nitric acid varies according to

$$
\frac{d N}{d t}+\frac{2 N}{40-t}=1.2
$$

The integrating factor is then given by

$$
\mu(t)=(40-t)^{-2}
$$

Part (b) (continued)
So $\frac{d}{d t}\left((40-t)^{-2} N\right)=1.2 \cdot(40-t)^{-2}$ and

$$
(40-t)^{-2} N=1.2 \cdot \int(40-t)^{-2} d t=1.2 \cdot(40-t)^{-1}+C
$$

So

$$
N(t)=1.2 \cdot(40-t)+C(40-t)^{2} .
$$

The initial condition $N(10)=23.1024$ gives $C=-0.0143$. So $N(20)=18.27 \mathrm{~L}$.

Contents

(1) More on Mixing

(2) 2nd Order Linear Equations

2nd Order ODES

Definition

A second order linear ODE can be written in the form

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=g(t) \tag{1}
\end{equation*}
$$

where $a(t), b(t), c(t)$, and $g(t)$ are functions that only depend on t.

2nd Order ODES

Definition

A second order linear ODE can be written in the form

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=g(t) \tag{1}
\end{equation*}
$$

where $a(t), b(t), c(t)$, and $g(t)$ are functions that only depend on t.

- For simplicity we begin by studying ODE's of the form

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{2}
\end{equation*}
$$

where a, b, and c are all constant and $a \neq 0$.

2nd Order ODES

Definition

A second order linear ODE can be written in the form

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=g(t) \tag{1}
\end{equation*}
$$

where $a(t), b(t), c(t)$, and $g(t)$ are functions that only depend on t.

- For simplicity we begin by studying ODE's of the form

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{2}
\end{equation*}
$$

where a, b, and c are all constant and $a \neq 0$.

- The ODE governing the displacement $y(t)$ for the harmonic oscillator is

$$
m y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=0
$$

where m is the mass of the object attached to the spring, $b \geqslant 0$ is coefficient of friction, and $k>0$ measures the stiffness of the spring.

Linear Independence

- Before considering the 2nd order constant coefficient ODE

$$
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0
$$

is helpful to study it's first order counter part

$$
\begin{equation*}
y^{\prime}(t)+k y(t)=0 \tag{3}
\end{equation*}
$$

which has a general solution $y(t)=A e^{-k t}$ where $A \in \mathbb{R}$ is constant.

Linear Independence

- Before considering the 2 nd order constant coefficient ODE

$$
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0
$$

is helpful to study it's first order counter part

$$
\begin{equation*}
y^{\prime}(t)+k y(t)=0 \tag{3}
\end{equation*}
$$

which has a general solution $y(t)=A e^{-k t}$ where $A \in \mathbb{R}$ is constant.

Definition

Let $I \subset \mathbb{R}$ be a domain. We say that function $y_{1}, y_{2}: I \rightarrow \mathbb{R}$ are linearly dependent if there exists a constant $\alpha \in \mathbb{R}$ such that

$$
y_{1}(t)=\alpha y_{2}(t)
$$

for all $t \in I$. If not, we say that y_{1} and y_{2} are linearly independent

Linear Independence

- Before considering the 2 nd order constant coefficient ODE

$$
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0
$$

is helpful to study it's first order counter part

$$
\begin{equation*}
y^{\prime}(t)+k y(t)=0 \tag{3}
\end{equation*}
$$

which has a general solution $y(t)=A e^{-k t}$ where $A \in \mathbb{R}$ is constant.

Definition

Let $I \subset \mathbb{R}$ be a domain. We say that function $y_{1}, y_{2}: I \rightarrow \mathbb{R}$ are linearly dependent if there exists a constant $\alpha \in \mathbb{R}$ such that

$$
y_{1}(t)=\alpha y_{2}(t)
$$

for all $t \in I$. If not, we say that y_{1} and y_{2} are linearly independent

Example

Show that the ODE $y^{\prime \prime}+5 y^{\prime}-6 y=0$ admits two linearly independent solutions.

Second Order IVPs

Theorem

Let $a \neq 0, b$, and c be constants and consider the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{4}
\end{equation*}
$$

Second Order IVPs

Theorem

Let $a \neq 0, b$, and c be constants and consider the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{4}
\end{equation*}
$$

- Then (4) admits a pair of linearly independent solutions.

Second Order IVPs

Theorem

Let $a \neq 0, b$, and c be constants and consider the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{4}
\end{equation*}
$$

- Then (4) admits a pair of linearly independent solutions.
- Suppose y_{1} and y_{2} are linearly independent solutions to (4). Then

$$
\begin{equation*}
y: \mathbb{R} \rightarrow \mathbb{R}, \quad y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t) \tag{5}
\end{equation*}
$$

is a general solution to (4).

Second Order IVPs

Theorem

Let $a \neq 0, b$, and c be constants and consider the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{4}
\end{equation*}
$$

- Then (4) admits a pair of linearly independent solutions.
- Suppose y_{1} and y_{2} are linearly independent solutions to (4). Then

$$
\begin{equation*}
y: \mathbb{R} \rightarrow \mathbb{R}, \quad y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t) \tag{5}
\end{equation*}
$$

is a general solution to (4). More precisely, if $x_{0}, y_{0}, y_{1} \in \mathbb{R}$, then there exists unique constants C_{1} and C_{2} such that (5) defines a solution to (4) satisfying

$$
y\left(x_{0}\right)=y_{0} \quad \text { and } \quad y^{\prime}\left(x_{0}\right)=y_{1}
$$

Second Order IVPs

Theorem

Let $a \neq 0, b$, and c be constants and consider the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{4}
\end{equation*}
$$

- Then (4) admits a pair of linearly independent solutions.
- Suppose y_{1} and y_{2} are linearly independent solutions to (4). Then

$$
\begin{equation*}
y: \mathbb{R} \rightarrow \mathbb{R}, \quad y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t) \tag{5}
\end{equation*}
$$

is a general solution to (4). More precisely, if $x_{0}, y_{0}, y_{1} \in \mathbb{R}$, then there exists unique constants C_{1} and C_{2} such that (5) defines a solution to (4) satisfying

$$
y\left(x_{0}\right)=y_{0} \quad \text { and } \quad y^{\prime}\left(x_{0}\right)=y_{1}
$$

Example

We've seen that $y_{1}(t)=e^{t}$ and $y_{2}(t)=e^{-6 t}$ are linearly independent solutions to $y^{\prime \prime}+5 y^{\prime}-6 y=0$. The theorem implies $y(t)=C_{1} e^{t}+C_{2} e^{-6 t}$ is a general solution.

The Auxilliary Equation (Distinct Real Roots)

Definition

Given constants $a \neq 0, b$, and c, we call the equation

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{6}
\end{equation*}
$$

the auxilliary or characteristic equation of the ODE $a y^{\prime \prime}+b y^{\prime}+c y=0$.

The Auxilliary Equation (Distinct Real Roots)

Definition

Given constants $a \neq 0, b$, and c, we call the equation

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{6}
\end{equation*}
$$

the auxilliary or characteristic equation of the ODE $a y^{\prime \prime}+b y^{\prime}+c y=0$.

- If r is a root of (6) then $y(t)=e^{r t}$ solves the ODE $a y^{\prime \prime}+b y^{\prime}+c y=0$.

The Auxilliary Equation (Distinct Real Roots)

Definition

Given constants $a \neq 0, b$, and c, we call the equation

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{6}
\end{equation*}
$$

the auxilliary or characteristic equation of the ODE $a y^{\prime \prime}+b y^{\prime}+c y=0$.

- If r is a root of (6) then $y(t)=e^{r t}$ solves the ODE $a y^{\prime \prime}+b y^{\prime}+c y=0$.
- If $b^{2}-4 a c>0$ so that

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

are distinct reals roots of (6),

The Auxilliary Equation (Distinct Real Roots)

Definition

Given constants $a \neq 0, b$, and c, we call the equation

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{6}
\end{equation*}
$$

the auxilliary or characteristic equation of the ODE $a y^{\prime \prime}+b y^{\prime}+c y=0$.

- If r is a root of (6) then $y(t)=e^{r t}$ solves the ODE $a y^{\prime \prime}+b y^{\prime}+c y=0$.
- If $b^{2}-4 a c>0$ so that

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

are distinct reals roots of (6),then

$$
y_{1}(t)=e^{r_{1} t} \quad \text { and } \quad y_{2}(t)=e^{r_{2} t}
$$

are linearly independent solutions to $a y^{\prime \prime}+b y^{\prime}+c y=0$.

The Auxilliary Equation (Distinct Real Roots)

Definition

Given constants $a \neq 0, b$, and c, we call the equation

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{6}
\end{equation*}
$$

the auxilliary or characteristic equation of the ODE $a y^{\prime \prime}+b y^{\prime}+c y=0$.

- If r is a root of (6) then $y(t)=e^{r t}$ solves the ODE $a y^{\prime \prime}+b y^{\prime}+c y=0$.
- If $b^{2}-4 a c>0$ so that

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

are distinct reals roots of (6),then

$$
y_{1}(t)=e^{r_{1} t} \quad \text { and } \quad y_{2}(t)=e^{r_{2} t}
$$

are linearly independent solutions to $a y^{\prime \prime}+b y^{\prime}+c y=0$.

- So if $b^{2}-4 a c>0$ then the theorem on the previous slide implies that $a y^{\prime \prime}+b y^{\prime}+c y=0$ has the general solution $y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$ with $t \in \mathbb{R}$.

The Auxilliary Equation (A Repeated Real Root)

How can we construct two linearly independent solutions to the ODE

$$
a y^{\prime \prime}(t)+b y^{\prime}(t)+c=0
$$

when the auxilliary equation $a r^{2}+b r+c=0$ has a repeated real root?
Answer: Trial a solution of the form $y(t)=v(t) \cdot e^{r t}$.

The Auxilliary Equation (A Repeated Real Root)

How can we construct two linearly independent solutions to the ODE

$$
a y^{\prime \prime}(t)+b y^{\prime}(t)+c=0
$$

when the auxilliary equation $a r^{2}+b r+c=0$ has a repeated real root?

$$
\text { Answer: Trial a solution of the form } y(t)=v(t) \cdot e^{r t} \text {. }
$$

Theorem

Suppose $b^{2}-4 a c=0$ so that $a r^{2}+b r+c=0$ has a unique real root $r=\frac{-b}{2 a}$.

The Auxilliary Equation (A Repeated Real Root)

How can we construct two linearly independent solutions to the ODE

$$
a y^{\prime \prime}(t)+b y^{\prime}(t)+c=0
$$

when the auxilliary equation $a r^{2}+b r+c=0$ has a repeated real root?

$$
\text { Answer: Trial a solution of the form } y(t)=v(t) \cdot e^{r t} \text {. }
$$

Theorem

Suppose $b^{2}-4 a c=0$ so that $a r^{2}+b r+c=0$ has a unique real root $r=\frac{-b}{2 a}$. Then

$$
y_{1}(t)=e^{r t} \quad \text { and } \quad y_{2}(t)=t e^{r t}
$$

are linearly independent solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$.

The Auxilliary Equation (A Repeated Real Root)

How can we construct two linearly independent solutions to the ODE

$$
a y^{\prime \prime}(t)+b y^{\prime}(t)+c=0
$$

when the auxilliary equation $a r^{2}+b r+c=0$ has a repeated real root?

$$
\text { Answer: Trial a solution of the form } y(t)=v(t) \cdot e^{r t} \text {. }
$$

Theorem

Suppose $b^{2}-4 a c=0$ so that $a r^{2}+b r+c=0$ has a unique real root $r=\frac{-b}{2 a}$. Then

$$
y_{1}(t)=e^{r t} \quad \text { and } \quad y_{2}(t)=t e^{r t}
$$

are linearly independent solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Example

(a) Write down a general solution to the ODE $y^{\prime \prime}-4 y^{\prime}+4 y=0$.
(b) Solve the IVP

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0 .
$$

